MATH 590: QUIZ 3

Name:

Throughout V will denote a vector space over F, where $F=\mathbb{R}$ or $F=\mathbb{C}$.

1. Determine if the vectors $v_{1}:=\left(\begin{array}{l}1 \\ 1 \\ 2\end{array}\right), v_{2}:=\left(\begin{array}{c}3 \\ 2 \\ -1\end{array}\right), v_{3}:=\left(\begin{array}{l}7 \\ 5 \\ 0\end{array}\right)$ are linearly independent or linearly dependent. If dependent, exhibit a dependence relation among them. (4 points)
Solution. The vectors are linearly independent if and only if the system $A \cdot\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right)$ has a unique (zero) solution. Otherwise the vectors are linearly dependent and any solution to the system of equations gives rise to a dependence relation, where A is the 3×3 matrix whose columns are v_{1}, v_{2}, v_{3}. Applying Gaussian elimination to the augmented matrix $\left(\begin{array}{ccc|c}1 & 3 & 7 & 0 \\ 1 & 2 & 5 & 0 \\ 2 & -1 & 0 & 0\end{array}\right)$ produces the reduced row echelon matrix $\left(\begin{array}{lll|l}1 & 0 & 1 & 0 \\ 0 & 1 & 2 & 0 \\ 0 & 0 & 0 & 0\end{array}\right)$. This shows that the corresponding homogeneous system of equations has a non-zero solution, and thus the vectors v_{1}, v_{2}, v_{3} are linearly dependent.
The solutions to the system are all vectors of the form $\left(\begin{array}{c}-t \\ -2 t \\ t\end{array}\right)$, with $t \in \mathbb{R}$. Taking $t=-1$, we have $1 \cdot v_{1}+2 \cdot v_{2}-1 \cdot v_{3}=\overrightarrow{0}$.
2. State the Exchange Theorem. (3 points)

Solution. Given vectors $w_{1}, \ldots, w_{r}, u_{1}, \ldots, u_{s} \in V$ such that $\operatorname{Span}\left\{w_{1}, \ldots, w_{r}\right\}=V$ and u_{1}, \ldots, u_{s} are linearly independent, then $s \leq r$. Moreover, after re-indexing the $w_{i}^{\prime} s$, we have $V=\operatorname{Span}\left\{u_{1}, \ldots, u_{s}, w_{s+1}, \ldots, w_{r}\right\}$.
3. Find a basis for the space of real symmetric 2×2 matrices. No need to justify your answer. (3 points)
Solution. A (natural) basis is $\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)$. This follows since given a real symmetric matrix $\left(\begin{array}{ll}a & b \\ b & c\end{array}\right)$, we have

$$
\left(\begin{array}{ll}
a & b \\
b & c
\end{array}\right)=a\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)+b\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)+c\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)
$$

and the given matrices are clearly linearly independent.

